Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The rapid advancement of nanotweezers for wireless manipulation of artificial micro‐ and nanoparticles has unlocked unprecedented possibilities in biomedicine. This review delves into optical, electric, and magnetic tweezers, emphasizing their roles in controlling single particles with micro/nanoscale features as miniaturized tools. Instead of providing a comprehensive review, this work highlights a select number of representative historical and contemporary examples of each type of tweezer, covering their rudimental working mechanisms, experimental setups, performance characteristics, and niche biomedical applications. Particularly, the focus lies in providing a quantitative comparison of the performances in spatial precision and degrees of freedom in controlling single particles, along with associated challenges and prospects.more » « less
-
Abstract 2D transition‐metal‐dichalcogenide materials, such as molybdenum disulfide (MoS2) have received immense interest owing to their remarkable structure‐endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one‐side‐open hollow micromachine, which demonstrates increased light absorption of TiO2‐based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type‐II bandgap alignment of MoS2/TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2/TiO2, the micromachines achieve sunlight‐powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.more » « less
-
Abstract Molybdenum disulfide (MoS2) is a multifunctional material that can be used for various applications. In the single‐crystalline form, MoS2shows superior electronic properties. It is also an exceptionally useful nanomaterial in its polycrystalline form with applications in catalysis, energy storage, water treatment, and gas sensing. Here, the scalable fabrication of longitudinal MoS2nanostructures, i.e., nanoribbons, and their oxide hybrids with tunable dimensions in a rational and well‐reproducible fashion, is reported. The nanoribbons, obtained at different reaction stages, that is, MoO3, MoS2/MoO2hybrid, and MoS2, are fully characterized. The growth method presented herein has a high yield and is particularly robust. The MoS2nanoribbons can readily be removed from its substrate and dispersed in solution. It is shown that functionalized MoS2nanoribbons can be manipulated in solution and assembled in controlled patterns and directly on microelectrodes with UV‐click‐chemistry. Owing to the high chemical purity and polycrystalline nature, the MoS2nanostructures demonstrate rapid optoelectronic response to wavelengths from 450 to 750 nm, and successfully remove mercury contaminants from water. The scalable fabrication and manipulation followed by light‐directed assembly of MoS2nanoribbons, and their unique properties, will be inspiring for device fabrication and applications of the transition metal dichalcogenides.more » « less
An official website of the United States government
